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Abstract Irreversible quantum dynamics is reviewed by
means of projected resolvents and effective Hamiltonians.
It is shown that for a particular partition the dynamical equa-
tions are formally identical to the generalized Langevin equa-
tion of non-equilibrium statistical mechanics. Three model
applications underline the fundamental role played by fluc-
tuations to study line profiles in spectroscopy and to discuss
the relationship between fluctuation and dissipation. A new
expression of the parameter q characterizing Fano profiles is
presented.
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1 Introduction

Projection methods are widely used in quantum chemistry to
study the variables of interest while discarding the irrelevant
degrees of freedom [1,2]. These methods are also of funda-
mental importance in non-equilibrium statistical mechanics
to investigate macroscopic variables [3,4]. The comparison
between theory and experiment is usually achieved through
the determination of mean values. However, a deeper under-
standing of the phenomena may require a finer analyses in
terms of fluctuations (dispersions) [5]. A typical example
is the local analysis of delocalized molecular wave func-
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tions in terms of atomic charges and of their fluctuations. A
similar analysis also helps to investigate spin orderings [6].
The molecular orbitals delocalized on the entire molecule
are viewed as macroscopic variables (long correlation times)
whereas the atomic orbitals are microscopic variables (short
correlation times). Although quantum mechanics, quantum
chemistry and non-equilibrium statistical mechanics are sep-
arated fields, the use of projection techniques and the per-
turbation theory pleads in favor of the development of a
comprehensive theory. Projected resolvents and effective inter-
actions are universal tools for investigating the dynamics.
Moreover, the theory benefits from the powerful properties
of analytic functions. We have already shown that the deter-
mination of small-dimensional effective Hamiltonians allows
a simple description of the line profiles in spectroscopy. Fano
profiles [7] are easily described in terms of interference
between two resonances [8]. The theory was extended to sev-
eral interacting resonances [9,10]. In this paper we continue
to derive results of general relevance. The theory is recalled
in Sect. 2 where various partitions of the resolvent are pre-
sented. It is shown that one of these partitions is formally
identical to the Langevin equation of non-equilibrium statis-
tical mechanics. Then, in Sect. 3, the formalism is applied to
three specific problems. First, we present a form of the fluctu-
ation–dissipation theorem based on the perturbation theory.
The second application gives an expression of the q parame-
ter of Fano profiles that contains explicitly the lifetime and the
dispersion in energy of a resonance. Finally, some dynamical
aspects of the ionization of the hydrogen atom are discussed.

2 Theory

Let H be the Hamiltonian of the system. The dynamics is
characterized by the evolution operator

U (t) = e−i Ht/h̄, (1)

the Laplace transform of which is the resolvent or Green
operator

G(z) = 1

z − H
, (2)
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where z is the variable energy extended in the complex plane
[11]. The evolution operator is recovered by the inverse Laplace
transformation

U (t) = 1

2π i

∫

C

G(z) e−i zt/h̄dz (t > 0). (3)

The Green operator which is unambiguously defined for
Im z > 0 is assumed to be analytically continued in the sec-
ond Riemann sheet for Im z < 0. The integration path C in
the complex plane runs on the real-energy axis from +∞ to
−∞ and is closed in the lower part (Im z < 0) of the complex
plane (see, for example, Ref. [12]).

The introduction of the resolvent in quantum mechan-
ics applied to the many-body problem was done more than
half a century ago [13–15]. Since that time resolvents and
the closely related correlation functions have found extended
applications in many domains ranging from atomic and molec-
ular physics [4,11], condensed matter physics [16], chemical
physics [17] to nuclear physics [18,19]. Resolvents and cor-
relation functions play also a fundamental role in statistical
mechanics [3,4,20–22]. The purpose of this paper is not to
review such extended fields since there is a huge literature on
these subjects. Our aim is to focus on projection methods and
partitioning techniques (see, e.g., [1,10,11,23–25]) implying
resonances and to show that elementary models and analytic
continuation, without any reference to the many-body theory,
can already provide results of general value.

For many applications it is convenient to investigate the
Green operator by means of perturbative approaches using
partitioning techniques. The space of the states is divided
into a small n-dimensional model (or inner) space and its
orthogonal complement the outer space. The projectors onto
the model space and the outer space are P0 and Q0, respec-
tively, (P0 + Q0 = 1). The projector into the model space
can be written as

P0 =
n∑

i=1

|i〉〈i |; 〈i | j〉 = δi j ; i, j = 1, 2 · · · n. (4)

If we are interested in the dynamics in the model space, the
relevant information is provided by the projected resolvent

P0
1

z − H
P0 = P0

z − H eff(z)
. (5)

Equation (5) defines an energy-dependent effective
Hamiltonian

H eff(z) = P0 H P0 + R(z);
R(z) = P0 H

Q0

z − H
H P0. (6)

P0 H P0 is the Hamiltonian projected in the model space and
R(z) is an energy-shift operator [11]. In Eq. (6) and here-
after, we shall use the abbreviated notation Q0/(z − H)
instead of Q0/(z − Q0 H Q0) which means the inversion of
Q0(z − H)Q0 within the outer space. A more general parti-
tion of the resolvent (see appendix A) is

1

z − H
P0 = P0

z − H eff(z)
+ Q0

z − H
H

P0

z − H eff(z)
. (7)

It results from Eq. (7) that the Laplace transform of the time
derivative of the evolution operator projected, on the right,
in the model space can be expressed as

H

z − H
P0 = H eff(z)

z − H eff(z)
+ Q0

z − H
H

P0

z − H eff(z)
z. (8)

Equations (7) and (8) assume that the resolvent has been par-
titioned according to (36) in appendix A. Another form of
Eq. (8) is derived in appendix A from the partition (42):

H

z − H
P0 = 1

z − H
H eff(z)+ Q0

z − H
H P0. (9)

The above expressions underline the importance of discuss-
ing the reduced dynamics arising from an initial state belong-
ing to the model space in terms of effective Hamiltonians. The
formal connection with the Langevin equation is established
in Appendix A.

The aim of the theory is to provide effective Hamiltoni-
ans which depend as little as possible on the energy. This
can be achieved by extending the model space. The choice of
the states defining the model space is crucial. These states are
generally long-lived states, for example, resonances or quasi-
bound states [2]. However, the model space can also include
short-lived states which produce asymmetric line profiles in
spectroscopy (Fano profiles). This is similar to non-equilib-
rium statistical mechanics where both slow and fast variables
are required for passing from the microscopic world (short
correlation times) to the macroscopic world (long correlation
times). From an effective Hamiltonian the dynamics in the
model space is provided by the inverse Laplace transforma-
tion

|φ(t)〉 = 1

2π i

∫

C

P0

z − H eff(z)
|φ〉 e−i zt/h̄ dz. (10)

|φ(t)〉 is the projection of the exact solution in the model
space and φ is the initial state. The probability of remaining
in the initial state (survival probability) at time t is

P(t) = | 〈φ|φ(t)〉 |2. (11)

Other observables are the line shapes (or line profiles)
characterized by the intensity

I (E) = − 1

π
Im G(E); G(E) = 〈φ| P0

E − H eff(E)
|φ〉.(12)

E is the energy and it is always assumed that the system was
prepared at the initial time t = 0 in a discrete state |φ〉 cou-
pled to a continuum. We aim to investigate the exact solution
ψ(t) = exp (−i Ht/h̄)|φ〉 that can be expanded as

|ψ(t)〉 = |φ〉 − i
t

h̄
H |φ〉 − t2

2h̄2 H2|φ〉 · · · (13)

For short times the dynamics is supported by the states Hk |φ〉;
(k = 0, 1, . . .) which generate the basis of the method of
moments [26]. Since these states are non-orthogonal, the
Gram–Schmidt procedure applied to |φ〉, H |φ〉, H2|φ〉 . . .
defines in the model space an orthogonal basis |i〉; (i =
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1, 2, . . . , n). In this paper we shall consider only two- and
three-dimensional model spaces (n = 2, 3). The associated
matrix representations are

Heff(z) =
[

E1 �E
�E E2 + R2(z)

]
(14)

and

Heff(z) =
⎡
⎣ E1 �E 0
�E E2 H23

0 H23 E3 + R3(z)

⎤
⎦ , (15)

where R2(z) = 〈2|R(z)|2〉 and R3(z) = 〈3|R(z)|3〉. The ma-
trix representations (14) and (15) are not universal. In fact,
they are specific to the case when the model space is generated
from an arbitrary initial state |φ〉 and the successive action of
H on it. The energy-shift operator is represented by a unique
non-zero element only under these assumptions (see, e.g.,
[21] chapter 14). The advantage of using an orthonormal ba-
sis is to provide matrix representations whose elements have
a clear meaning: energies on the diagonal and extra-diagonal
energy dispersions. Thus �E = [ 〈1|H2|1〉 − 〈1|H |1〉2 ]1/2
represents the fluctuation of the energy in the initial state.
Matrices (14) and (15) are exact. Unfortunately, their deter-
mination for actual systems is a difficult task. Nevertheless,
we will show that simple matrix representations, such as (14)
and (15), can provide general results in many domains rang-
ing from line profiles (Fano profiles) to the fundamentals of
fluctuation and dissipation. From a mathematical point of
view the success is founded on the basic properties of ana-
lytic functions, mainly on analytic continuation.
The purpose of the elementary applications that are pre-
sented in the next section is to illustrate the relevance of the
approach.

3 Applications

3.1 Fluctuation and dissipation

We start from the matrix representation (14) and consider a
simplified model of a resonance which may be weakly or
strongly coupled to a continuum. It is assumed that there are
no other resonances imbedded in the continuum. Then one
can neglect the dependence of R2(z)on z (see complement C3
in Ref [11]) for a flat continuum approximation and a graphi-
cal construction of the Green function to understand the time
evolution of the system. Separating the real and imaginary
parts of R2(z) provides

R2(z) � �c − i
�c

2
(16)

which allows to transform (14) into the energy-independent
effective Hamiltonian

Heff=
[

E1 �E
�E Ec − i�c

2

]
�
�

���
������� . (17)

Ec = E2 + �c and �c are the energy and the width of the
effective part of the continuum (doorway state) [19,27]. The
spectral decomposition of the effective Hamiltonian reads

H eff = |φ1〉〈φ̃1| E1 + |φ2〉〈φ̃2| E2. (18)

The eigenenergies E1 and E2 are complex; 〈φ̃1| and 〈φ̃2| are
the duals of |φ1〉 and |φ2〉 [8]. The application of the Cau-
chy theorem in Eq. (10) leads to the time-dependent wave
function

φ(t) = c̃1 exp (−i
E1

h̄
t)|φ1〉 + c̃2 exp (−i

E2

h̄
t)|φ2〉, (19)

where

c̃1 = 〈φ̃1|φ〉; c̃2 = 〈φ̃2|φ〉. (20)

Equation (19) allows us to compute the survival probability
(11). The line shape can be expressed as

I (E) = − 1

π
Im

(
f1

E − E1
+ f2

E − E2

)
;

fi = 〈φ|φi 〉〈φ̃i |φ〉; (i = 1, 2). (21)

The survival probabilities and the associated line shapes are
represented in Fig. 1 for three values of �c. From (a) to (c)
one passes from an irreversible decay of the survival proba-
bility to Rabi-like reversible oscillations. These results were
obtained from the exact diagonalization of the effective Ham-
iltonian. However, it is illuminating to proceed by pertur-
bation in order to provide new insights in the relationship
between fluctuation and dissipation. Assuming that the diag-
onal terms are dominant in (17), the perturbation theory pro-
vides the eigenenergies

E1 = E1 + (�E)2

E1 − Ec + i�c
2

+ · · · ;

E2 = Ec − i
�c

2
+ (�E)2

Ec − E1 − i�c
2

+ · · · (22)

In addition, if we assume that |Ec − E1| � �c, Eq. (22)
reduces to

E1 = E1 − i
�

2
+ · · · ,

E2 = Ec − i
�c

2
+ i
�

2
+ · · · (23)

where

� = 4 (�E)2

�c
. (24)

Equation (24) provides a particular form of the fluctua-
tion–dissipation theorem which relates spectral densities of
fluctuation to dissipation functions. Here the fluctuation in
energy�E is related to the dissipation coefficient � appear-
ing in the exponential decay of P(t) � exp (−�h̄ t). This
means that only zero-frequency components are considered.
In addition no trace was taken over a reservoir (Fig 1). How-
ever, the same expression (24) was derived by Cohen-Tan-
noudji et al. from a “coarse grained” expression of the rate
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Fig. 1 Dissipation and oscillations. From weak to strong coupling. The
effective Hamiltonian is given by Eq. (17). E1 = Ec = 0,�E = 1. The
dynamics (on the left) and the line shapes (on the right) are presented
for three values of �c (a) �c = 12, (b) �c = 0.3, (c) �c = 0.001. The
system was prepared in the initial state |1〉. (arbitrary units)

of variation of the density matrix (operator) describing a sta-
tistical mixture of states (see §D in chapter IV of Ref. [11]).
Since expression (24) was derived by perturbation, the condi-
tions of validity of the perturbation theory must be satisfied.
The eigenfunctions associated with E1 and E2 are

|φ1〉 = |1〉 + 2 i
�E

�c
|2〉 + · · · ,

|φ2〉 = |2〉 − 2 i
�E

�c
|1〉 + · · · , (25)

the validity of which requires

�E � �c. (26)

Let us define two correlation and dissipation times by

τc = h̄

�c
; τ = h̄

�
. (27)

Then condition (26) can be transformed into

τc � τ (28)

which means that the microscopic correlation time must be
much shorter that the macroscopic correlation time. Condi-
tion (28) can also be transformed into

�E · τ � h̄

2
(29)

which is compatible with the energy–time uncertainty rela-
tion.
Thus, we have not only established an expression of the
fluctuation–dissipation theorem but have also predicted its
range of validity in the framework of the standard perturba-
tion theory. The results which were derived from effective
Hamiltonians and wave functions could be easily general-
ized to effective Liouvillians and density matrices when the
initial state is not a pure state. In many cases it is easier to
apply the perturbation theory in the complex plane (energy or
frequency) than to investigate directly the time-dependent ob-
servables (time-dependent perturbation theory, coarse grain-
ing, etc.).

3.2 Fano profiles

The above derivation of the fluctuation–dissipation theorem
was based on a simple model Hamiltonian. We employ it
again to investigate asymmetric profiles in spectroscopy imply-
ing quantum interferences with the continuum. Instead of
using the perturbation theory we shall determine the exact
Green function associated with the initial state

|φ〉 = cos θ |1〉 + sin θ |2〉. (30)

The probabilities of exciting the resonance and of exciting
the continuum at the initial time are cos2 θ and sin2 θ , respec-
tively (Fig 2). Assuming E1 = Ec = 0, the direct calculation
of the Green function (12) gives

G(E) = E +�E sin 2θ + i�c
2 cos2 θ

E (E + i�c
2 )− (�E)2

(31)

and the intensity

I (E) =
∣∣∣∣∣

E sin θ +�E cos θ

E (E + i�c
2 )− (�E)2

∣∣∣∣∣
2
�c

2π
. (32)

It allows the direct determination of the Fano q parameter
(see Eq. (20) in Ref. [9])

q = 2 �E
�
· cot θ . (33)

This expression is exact and new. It should have a large range
of validity irrespective of the type of spectroscopy (dipolar
electric, magnetic…). It is the product of two factors. The
first one is the ratio of the dissipation in energy of the reso-
nance�E over its lifetime�. The second factor is the ratio of
the probability amplitudes of exciting the resonance (cos θ )
or the continuum (sin θ ) at the initial time. The parameter q
appears in the celebrated Fano’s expression of the line shape.
It characterizes the asymmetry of the profile (see Eq. (21)
in Ref. [7]). Expression (33) may appear rather formal since
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Fig. 2 Fano profiles. The effective Hamiltonian is given by (17),
E1 = Ec = 0, �E = 1 and �c = 10. The survival probabilities P(t)
Eq. (11) (on the left) and the line shapes I (E) Eq. (12) (on the right) are
represented for the initial state |φ〉 = cos θ |1〉 + sin θ |2〉. (a) θ = 0,
q = ∞, (b) θ = π/3, q = 5/

√
3, (c) θ = π/2, q = 0. (arbitrary units)

�E and cot θ are not measurable. However, the essence of
this expression is to express the observable quantities q and
� in terms of the dispersion in energy �E and cot θ which
govern the excitation of the continuum at the initial state, thus
providing a microscopic explanation of their origin.

Expression (33) is the second important result of this pa-
per after the derivation of the formula (24) of the fluctua-
tion–dissipation theorem. Note again the role played by the
fluctuation �E in the expression (33).

3.3 Ionization of the hydrogen atom

A hydrogen atom is subjected to a static electric field of
amplitude E . As soon as the atom is exposed to the field it be-
comes a resonance and the atom begins to ionize. We assume
that the atom is in the ground state at the initial time. Many
analytical and accurate numerical studies have been already
devoted to this system (see, for example, Ref. [28] and refer-
ences therein). Here we focus on models (14) and (15) which

provide an elementary description of the energy and of the
dynamical properties in terms of the energy dispersion �E
of the resonance. If the electric field is weak (E � 0.01 a.u),
the isolated resonance decays following approximatively an
exponential law. The Hamiltonian of the system in atomic
units (a.u.) is

H = −�
2
− 1

r
+ Er cos θ. (34)

The matrix elements of the representations (14) and (15) are
easily computed. One finds (a.u.)

E1 = −0.5, E2 = 0, E3 = 5+ (186/25)E2

1+ (996/25)E2 ,

H23 = 1

2
√

3

(
1+ 996

25
E2

) 1
2

. (35)

The lifetimes of the states |2〉 and |3〉 are much shorter than the
lifetime of the resonance 1s, so it is justified to assume that the
energy shifts R2(z) and R3(z) in (14) and (15) are complex
constants. In our model they were chosen in such a way that
one of the eigenvalues of the energy-independent effective
Hamiltonian (Markovian approximation) coincides exactly
with the pole of the Green function corresponding to the res-
onance 1s. The direct diagonalization of (14) and (15) allows
us to compute the survival probability of remaining in the ini-
tial state at the time t . Figure 3 shows that the simplest mod-
els n = 2 and n = 3 (dashed and dotted lines, respectively)
provide already good approximations of the exact dynamics
(full lines). The same is true for the line shapes on the right
of Fig. 3. We see that the solution improves from n = 2 to
n = 3. The more extended the model space is, the better
the solution. The exact solution would require n = ∞ but
this cannot be done within the method of moments which
fails from n = 3 because of the appearance of Dirac func-
tions. Thus the general statement concerning the relation-
ship between fluctuation and dissipation (see above) is well
illustrated on the simplest actual system possessing only one
electron.
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Fig. 3 Ionization of the hydrogen atom in a static electric field. E = 0.1
a.u. Full lines exact calculation; dashed lines model Hamiltonian n = 2;
dotted lines model Hamiltonian n = 3. The survival probability P(t)
and the intensity I (E) are defined by Eqs. (11) and (12) (atomic units).
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4 Conclusion

We have reviewed the theory of quantum dynamics based on
the determination of projected resolvents and energy-depen-
dent effective Hamiltonians. A similar approach for irrevers-
ible statistical physics would require the determination of
energy-dependent effective Liouvillians. We have pointed
out the partition needed for deriving projected equations of
the dynamics which are formally identical to the generalized
Langevin equation. We have presented a new formulation
of the relationship between fluctuation and dissipation when
the initial state is a pure state. For that purpose, a two-dimen-
sional effective Hamiltonian was especially useful since the
perturbation theory in the complex plane allowed us to ex-
press the width of the resonance in terms of a much larger
width of a doorway state. The derivation of a new expression
of the parameter q in Fano profiles is an illustration of how
the theory can bring generic results since the Green function
formalism can be extended to time-dependent Hamiltoni-
ans (see [12]). Another extension of the formalism including
mixed initial states (thermal averages) is being investigated.
It should open new ways to pass from the microscopic world
(short correlation times) to the macroscopic world (long cor-
relation times) and provide a better understanding of the roots
of irreversibility.
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Appendix

A Partitioning technique

The partition of the resolvent may be written as [2,11]
1

z − H
= P0

z − H eff(z)

+ Q0

z − H
H

P0

z − H eff(z)
+ P0

z − H eff(z)
H

Q0

z − H

+ Q0

z − H
+ Q0

z − H
H

P0

z − H eff(z)
H

Q0

z − H
,

(36)
where

H eff(z) = P0 H P0 + R(z); R(z) = P0 H
Q0

z − H
H P0.

(37)
The effective Hamiltonian H eff(z) is the sum of a projected
Hamiltonian and of a level-shift operator [11]. For any initial
state belonging to the model space, the relevant information
is contained in the resolvent (36) projected, on the right, in
the model space:

1

z − H
P0 = P0

z − H eff(z)
+ Q0

z − H
H

P0

z − H eff(z)
. (38)

If we are only interested in the dynamics projected in the
model space, the relevant information is contained in the fully
projected resolvent

P0
1

z − H
P0 = P0

z − H eff(z)
. (39)

The above expressions refer to the evolution operator. Simi-
lar projections of its time derivative will provide expressions
related to the Langevin equation of statistical mechanics. By
using (38) and (48), the Laplace transform of the time deriv-
ative of the evolution operator (52) projected, on the right, in
the model space is

H

z − H
P0 = H eff(z)

z − H eff(z)
+ Q0

z − H
H

P0

z − H eff(z)
z (40)

and its full projection is

P0
H

z − H
P0 = H eff(z)

z − H eff(z)
. (41)

Equations (38), (39), (40) and (41) emphasize the relevance
of the effective Hamiltonians for understanding the irrevers-
ible dynamics. In statistical physics, the Langevin equation
is not derived from Eq. (36) but from another partition of the
resolvent. The identity

1

z − H
Q0 = Q0

z − H
+ 1

z − H
P0 H

Q0

z − H
(42)

allows to transform Eq. (40) into
H

z − H
P0 = 1

z − H
P0 H P0 + 1

z − H
R(z)+ Q0

z − H
H P0

= 1

z − H
H eff(z)+ Q0

z − H
H P0. (43)

Using Eq. (51) and Eq. (53), the inverse Laplace transforma-
tion of Eq. (43) provides the dynamical equation

i h̄
dU

dt
P0=U (t)P0 H P0 + 1

i h̄

t∫

0

U (t − τ)R(τ )dτ+F(t),

(44)

where the “memory” operator R(τ ) is the inverse Fourier
transform of R(z). F(t) = exp (−i Q0 H Q0 t/h̄) H P0 is a
“random” or “fluctuating” force. Equation (44) looks like a
generalized Langevin equation [3]. Notice, however, that it
refers to probability amplitudes whereas Langevin equations
refer to densities.

B Laplace transformation

In this paper the Laplace transformation of a function f (t)
is defined by

f (z) = 1

i h̄

∞∫

0

dt f (t) ei zt/h̄ . (45)

For t > 0, f (t) is recovered by the inverse transformation
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f (t) = 1

2π i

∫
C

dz f (z) e−i zt/h̄ . (46)

In Eq. (46) z represents the energy extended in the complex
plane. The integration path in the complex plane is counter-
clockwise (see, for example, Ref. [12]). The advantage of
our definition is that it allows to recover f (t) by using the
standard properties of analytical functions (Cauchy theorem).
Some useful properties adapted from Ref. [29] are

f (t)←→ f (z) (47)

i h̄
d f

dt
←→ z f (z)− f (t = 0) (48)

i h̄ δ(t)←→ 1 (49)

θ(t)←→ 1

z
(50)

U (t) = e−i H
h̄ t ←→ 1

z − H
(51)

i h̄
dU

dt
←→ H

z − H
(52)

1

ih̄
f (t) 
 g(t)←→ f (z) · g(z). (53)

The convolution product is defined by

f (t) 
 g(t) =
t∫

0

f (τ ) g(t − τ) dτ =
t∫

0

f (t − τ) g(τ ) dτ.

(54)

In (54) δ(t) is the Dirac function, θ(t) is the Heaviside func-
tion, and H is the Hamiltonian operator.
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